Radice di una frazione

La radice di una frazione è un’operazione molto particolare che richiede attenzione.

In generale, la radice è l’opposto della potenza; per esempio:

2^4=16\to\sqrt[4]{16}=2

In questa lezione vedremo come si calcola la radice di una frazione.

In generale, vale la regola seguente:

\sqrt[a]{\frac{N}{D}}= \frac{\sqrt[a]{N}}{\sqrt[a]{D}}

Concretamente, la radice di una frazione con indice a si calcola applicando la radice sia al numeratore che al denominatore.

Presentiamo alcuni esempi per chiarire maggiormente questa regola.

Esempio 1

\sqrt[]{\frac{16}{25}}

In questo esempio è presente una radice quadrata (cioè con indice 2). Per svolgere questa operazione è sufficiente applicare la radice quadrata sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[]{\frac{16}{25}}= \frac{\sqrt[]{16}}{\sqrt[]{25}} =\frac{4}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice quadrata è la potenza alla seconda (o, al quadrato), avremo:

\frac{4^2}{5^2}=\frac{16}{25}

Esempio 2

\sqrt[3]{\frac{8}{125}}

In questo esempio è presente una radice con indice 3 (cioè una radice cubica). Per svolgere questa operazione è sufficiente applicare la radice cubica sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[3]{\frac{8}{125}}= \frac{\sqrt[3]{8}}{\sqrt[3]{125}} =\frac{2}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice cubica è la potenza alla terza (o, al cubo), avremo:

\frac{2^3}{5^3}=\frac{8}{125}

Esempio 3

\sqrt[]{1+\sqrt[]{\frac{49}{81}}}

In questo esempio è presente una doppia radice. Per svolgere questa operazione è necessario, innanzitutto, svolgere la radice interna; successivamente – quando tutte le operazioni sono state svolte e si ha un solo termine – si può risolvere la seconda radice.

Si precede, quindi, calcolando la prima radice (applicando la radice quadrata sia al numeratore che al denominatore), ottenendo:

\sqrt[]{1+\frac{7}{9}}}

Ora non resta che svolgere l’addizione, applicando le regole dell’addizione di frazioni, ottenendo così:

\sqrt[]{\frac{16}{9}}}

Applicando la radice quadrata sia al numeratore che al denominatore si ottiene:

\sqrt[]{\frac{16}{9}}= \frac{\sqrt[]{16}}{\sqrt[]{9}} =\frac{4}{3}

Frazioni con le proprietà delle potenze

Le proprietà delle potenze sono applicabili in molte operazioni matematiche.

Come si applicano le proprietà delle potenze alle frazioni?

  • Per prima cosa si applicano le regole in base alla specifica proprietà delle potenze
  • In seguito si applicano gli esponenti alla frazione risultante, ottenendo il risultato finale

Ci facciamo aiutare da alcuni esempi, specifici per ogni proprietà.

Prima proprietà delle potenze: prodotto di potenze con la stessa base

Esempio:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =

La proprietà prevede di mantenere la stessa base e di sommare gli esponenti, ottenendo:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =\left (  \frac{2}{3}\right )^{2+3}=\left (  \frac{2}{3}\right )^5

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^5=\frac{2^5}{3^5}\ =\frac{32}{243}\

Seconda proprietà delle potenze: quoziente di potenze con la stessa base

Esempio:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =

La proprietà prevede di mantenere la stessa base e di sottrarre gli esponenti, ottenendo:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =\left (  \frac{5}{4}\right )^{6-4}=\left (  \frac{5}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{5}{4}\right )^2=\frac{5^2}{4^2}\ =\frac{25}{16}\

Terza proprietà delle potenze: potenza di potenza

Esempio:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=

La proprietà prevede di mantenere la stessa base e di moltiplicare tra loro gli esponenti, ottenendo:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=  \left (  \frac{1}{2}\right )^{3 \cdot2}=  \left (  \frac{1}{2}\right )^6

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{1}{2}\right )^6=\frac{1^6}{2^6}=\frac{1}{64}

Quarta proprietà delle potenze: prodotto di potenze con lo stesso esponente

Esempio:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =

La proprietà prevede di mantenere lo stesso esponente e di moltiplicare le basi, ottenendo:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =\left (  \frac{3}{2} \cdot \frac{1}{2}\right )^2=\left (  \frac{3}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{3}{4}\right )^2=\frac{3^2}{4^2}=\frac{9}{16}

Quinta proprietà delle potenze: quoziente di potenze con lo stesso esponente

Esempio:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =

La proprietà prevede di mantenere lo stesso esponente e di dividere le basi (ricordando che la divisione di frazioni diventa una moltiplicazione, invertendo numeratore e denominatore della seconda frazione), ottenendo:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =\left (  \frac{1}{3} : \frac{1}{2}\right )^3=\left (  \frac{1}{3} \cdot \frac{2}{1}\right )^3=\left (  \frac{2}{3}\right )^3

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^3=\frac{2^3}{3^3}=\frac{8}{27}

Approfondimento: Videolezione sulle espressioni con le frazioni e le proprietà delle potenze

Potenza di una frazione

La potenza di una frazione è un’operazione da svolgere con attenzione, poiché si possono commettere alcuni errori importanti.

Per prima cosa è bene distinguere due casi:

  1. Potenza di una frazione con esponente positivo
  2. Potenza di una frazione con esponente negativo

1° caso – Potenza di una frazione con esponente positivo

Questo è il caso più semplice; esso segue la regola seguente:

\left ( \frac{N}{D} \right )^a=\frac{N^a}{D^a}

In sintesi, per svolgere la potenza di una frazione con esponente positivo è sufficiente applicare l’esponente sia al numeratore che al denominatore.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{3}{2} \right )^2 \frac{3^2}{2^2} \frac{9}{4}
\left ( \frac{1}{4} \right )^3 \frac{1^3}{4^3} \frac{1}{64}
\left ( \frac{9}{5} \right )^1 \frac{9^1}{5^1} \frac{9}{5}
\left ( \frac{10}{7} \right )^0 \frac{10^0}{7^0} \frac{1}{1}= 1

2° caso – Potenza di una frazione con esponente negativo

Questo è il caso richiede maggiore attenzione (è possibile fare riferimento anche alla lezione sulle potenze con esponente negativo); esso segue la regola seguente:

\left ( \frac{N}{D} \right )^{-a}=\left ( \frac{D}{N} \right )^{a}=\frac{D^a}{N^a}

In sintesi, per svolgere la potenza di una frazione con esponente negativo è necessario, prima di tutto, invertire la posizione del numeratore con quella del denominatore, togliendo il segno meno dall’esponente; in seguito, si procede come nel primo caso, quindi è sufficiente applicare l’esponente sia al numeratore che al denominatore.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{4}{3} \right )^{-2} \left ( \frac{3}{4} \right )^{2} \frac{3^2}{4^2} \frac{9}{16}
\left ( \frac{3}{2} \right )^{-3} \left ( \frac{2}{3} \right )^{3} \frac{2^3}{3^3} \frac{8}{27}
\left ( \frac{11}{7} \right )^{-1} \left ( \frac{7}{11} \right )^{1} \frac{7^1}{11^1} \frac{7}{11}
\left ( \frac{1}{2} \right )^{-5} \left ( \frac{2}{1} \right )^{5} \frac{2^5}{1^5} \frac{32}{1}=32