Espressioni con le frazioni

Devi svolgere delle espressioni con le frazioni? Sei nel posto giusto!

In questa lezione vedremo come risolvere una espressione con le frazioni, facendo attenzione alle regole di svolgimento che sono necessarie; faremo riferimento alle regole suggerire da altre lezioni presenti nel nostro sito, in particolare:

Altri contenuti teorici utili verranno suggeriti in seguito svolgendo gli esercizi proposti negli esempi.

Esempio 1 – Espressione con le frazioni senza parentesi

\frac{4}{3}\cdot\frac{4}{5}-\frac{1}{5}+\frac{2}{5}:\frac{3}{2}=

L’espressione dell’esempio proposto non ha parentesi; secondo le regole di svolgimento delle espressioni in generale, il primo passaggio da svolgere prevede di risolvere moltiplicazioni e divisioni, nell’ordine in cui sono scritte (può essere utile leggere come si svolgono moltiplicazioni di frazioni e divisioni di frazioni):

  • Si svolgerà la moltiplicazione \frac{4}{3}\cdot\frac{4}{5}, moltiplicando tra loro i numeratori e i denominatori delle due frazioni, ottenendo \frac{16}{15};
  • Si svolgerà la divisione \frac{2}{5} : \frac{3}{2}, che verrà trasformata in una moltiplicazione, cioè \frac{2}{5} \cdot \frac{2}{3}.

\frac{16}{15}-\frac{1}{5}+\frac{2}{5}\cdot\frac{2}{3}=

Il passaggio successivo prevede di svolgere la moltiplicazione rimasta, cioè \frac{2}{5} \cdot \frac{2}{3}, ottenendo così:

\frac{16}{15}-\frac{1}{5}+\frac{4}{15}=

A questo punto si procede svolgendo addizioni e sottrazioni (può essere utile leggere come si svolgono addizioni di frazioni e sottrazioni di frazioni): essendo frazioni, si deve determinare il minimo comune multiplo dei denominatori, cioè il minimo comune denominatore tra 5 e 15. Essendo 15 multiplo di 5, il denominatore comune è 15, quindi avremo:

\frac{(15:15) \cdot 16-(15:5) \cdot 1+(15:15) \cdot 4}{15}=

Svolgendo i passaggi al numeratore, si ottiene:

\frac{16-3+4}{15}= \frac{17}{15}

Esempio 2 – Espressione con le frazioni con le parentesi

\left [ \left ( \frac{3}{5}+\frac{1}{2} \right ) \cdot \frac{5}{11} \right ]- \frac{1}{3}=

L’espressione dell’esempio proposto ha parentesi tonde e quadre; secondo le regole di svolgimento delle espressioni in generale, il primo passaggio da svolgere prevede di risolvere le operazioni all’interno delle parentesi tonde e, in seguito, quelle all’interno delle quadre.

All’interno delle parentesi tonde è presente un’addizione \left ( \frac{3}{5}+\frac{1}{2} \right ), che si svolge come nel passaggio esposto nell’esempio 1; quindi si avrà:

\left [ \left ( \frac{6+5}{10} \right ) \cdot \frac{5}{11} \right ]- \frac{1}{3}=

Svolgiamo il calcolo all’interno delle parentesi tonde, ottenendo:

\left [ \frac{11}{10} \cdot \frac{5}{11} \right ]- \frac{1}{3}=

Tolte le parentesi tonde, ora è necessario togliere le parentesi quadre, svolgendo la moltiplicazione presente \left [ \frac{11}{10} \cdot \frac{5}{11} \right ]; è possibile semplificare, 11 con 11 e 10 con 5, ottenendo come risultato:

\frac{1}{2} - \frac{1}{3}=

Ora è sufficiente svolgere l’ultima operazione, una sottrazione, ottenendo:

\frac{3-2}{6}= \frac{1}{6}

Guarda la videolezione sotto riportata per un ulteriore esempio!

Vai alla pagina degli esercizi sulle espressioni con le frazioni!


Sei un insegnante? Dai un’occhiata a Didatticaoggi: un progetto per chi vive l’avventura dell’insegnamento!

Seguici e condividi!
RSS
Follow by Email
Facebook
Facebook
Twitter
YouTube
YouTube