Differenza di due angoli e loro rapporto

Differenza di due angoli e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La differenza delle ampiezze di due angoli è 12° e uno è i \frac{4}{3} dell’altro. Qual è la misura dei due angoli?

Questo è un classico problema nel quale è presente la differenza delle ampiezze dei due angoli e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • \alpha\beta = 12° – cioè la differenza delle ampiezza dei due angoli
  • \alpha = \frac{4}{3} \beta – cioè il rapporto tra i due angoli

\alpha e \beta rappresentano i due angoli incogniti.

Per determinare la misura delle ampiezze dei due angoli sono possibili due strade:

  1. Utilizzando la proprietà dello scomporre delle proporzioni
  2. La geometria, rappresentando il problema disegnando due segmenti

Proprietà dello scomporre delle proporzioni

Sapendo che il rapporto tra \alpha e \beta è \frac{4}{3}, possiamo impostare la proporzione nel modo seguente:

\alpha : \beta = 4 : 3

In più, sappiamo che \alpha – \beta = 12°. Possiamo, quindi, applicare la proprietà dello scomporre scrivendo:

(\alpha – \beta) : \alpha = (4 – 3) : 4

Ora è sufficiente sostituire 12° dentro la parentesi (\alpha – \beta), ottenendo:

12° : \alpha = 1 : 4

Per concludere si può ora facilmente ottenere \alpha, applicando la proprietà fondamentale delle proporzioni, cioè:

\alpha = (12° · 4) : 1 = 48°

Di conseguenza, \beta si può ottenere per differenza, cioè:

\beta = 48° – 12° = 36°

Geometria: segmenti

Sapendo che il rapporto tra \alpha e \beta è \frac{4}{3}, possiamo disegnare due segmenti, uno di lunghezza 4 unità e l’altro di lunghezza 3 unità:

Segmento 4 unità

Segmento 3 unità

Sapendo che \alpha – \beta = 12°, si può immaginare che la differenza sia rappresentata da un segmento pari a 1 unità, che corrisponde a 12°.

Considerando che 1 unità vale 12° e che i segmenti iniziali sono lunghi, rispettivamente, 4 unità e 3 unità, per stabilire la misura dell’ampiezza dei due angoli incogniti è sufficiente moltiplicare 12° per le unità di ogni segmento, cioè:

12° · 4 = 48° = \alpha

12° · 3 = 36° = \beta


Vai alla pagina degli esercizi su differenza di due angoli e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Somma di due angoli e loro rapporto

Somma di due angoli e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La somma delle ampiezze di due angoli è 70° e uno è i \frac{3}{4} dell’altro. Qual è la misura dei due angoli?

Questo è un classico problema nel quale è presente la somma delle ampiezze dei due angoli e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • \alpha + \beta = 70° – cioè la somma delle ampiezze dei due angoli
  • \alpha = \frac{3}{4} \beta – cioè il rapporto tra i due angoli

\alpha e \beta rappresentano i due angoli incogniti.

Per determinare la misura delle ampiezze dei due angoli sono possibili due strade:

  1. Utilizzando la proprietà del comporre delle proporzioni
  2. La geometria, rappresentando il problema disegnando due segmenti

Proprietà del comporre delle proporzioni

Sapendo che il rapporto tra \alpha e \beta è \frac{3}{4}, possiamo impostare la proporzione nel modo seguente:

\alpha : \beta = 3 : 4

In più, sappiamo che \alpha + \beta = 70°. Possiamo, quindi, applicare la proprietà del comporre scrivendo:

(\alpha + \beta) : \alpha = (3 + 4) : 3

Ora è sufficiente sostituire 70° dentro la parentesi (\alpha + \beta), ottenendo:

70° : \alpha = 7 : 3

Per concludere si può ora facilmente ottenere \alpha, applicando la proprietà fondamentale delle proporzioni, cioè:

\alpha = (70° · 3) : 7 = 30°

Di conseguenza, \beta si può ottenere per differenza, cioè:

\beta = 70° – 30° = 40°

Geometria: segmenti

Sapendo che il rapporto tra le ampiezze di \alpha e \beta è \frac{3}{4}, possiamo disegnare due segmenti, uno di lunghezza 3 unità e l’altro di lunghezza 4 unità:

Segmento 3 unità

Segmento 4 unità

Sapendo che \alpha + \beta = 70°, si può disegnare il segmento somma dei due angoli iniziali, ottenendo:

Segmento 7 unità

Come si può notare nel disegno sopra riportato, il segmento somma è formato da 7 unità, che corrispondono alla somma delle ampiezze dei due angoli incogniti.

Per determinare quanto vale 1 unità del segmento è sufficiente eseguire una semplice divisione, cioè:

70° : 7 = 10°

Sapendo che 1 unità vale 10° e che gli angoli iniziali sono ampi, rispettivamente, 3 unità e 4 unità, per stabilire la misura delle ampiezze dei due angoli incogniti è sufficiente moltiplicare 10° per le unità di ogni segmento, cioè:

10° · 3 = 30° = \alpha

10° · 4 = 40° = \beta


Vai alla pagina degli esercizi su somma di due angoli e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Multipli e sottomultipli di un angolo

Multipli e sottomultipli di un angolo: ecco la lezione che ti chiarirà ogni dubbio!

  1. Un angolo misura 23°: quanto misura il suo doppio? E il suo triplo?
  2. Sapendo che l’ampiezza di un angolo è 44°, qual è l’ampiezza dell’angolo che equivale alla sua metà? Qual è l’angolo equivalente alla sua quarta parte?

I problemi sopra proposti sono due esempi che riguardano il multiplo di un angolo (problema nr. 1) e il sottomultiplo di un angolo (problema nr. 2).

Il problema nr. 1 riguarda il multiplo di un angolo perché, partendo da un angolo iniziale, si chiede di trovare il suo doppio (significa due volte l’angolo iniziale) e il suo triplo (cioè tre volte l’angolo iniziale).

Il problema nr. 2 riguarda, invece, il sottomultiplo di un angolo perché, sapendo la misura dell’ampiezza dell’angolo iniziale, viene chiesto di trovare la sua metà (significa, semplicemente, dividere per 2 la misura dell’ampiezza dell’angolo iniziale) e la sua quarta parte (cioè trovare quanto misura \frac{1}{4} dell’ampiezza dell’angolo iniziale).

Risolviamo i due problemi sopra proposti.

Esempio 1

Un angolo misura 23°: quanto misura il suo doppio? E il suo triplo?

Come detto, il doppio dell’angolo significa “due volte” l’angolo iniziale, cioè:

23° · 2 = 46° (doppio)

Il triplo dell’angolo iniziale significa “tre volte” l’angolo iniziale, quindi:

23° · 3 = 69° (triplo)

Esempio 2

Sapendo che l’ampiezza di un angolo è 44°, qual è l’ampiezza dell’angolo che equivale alla sua metà? Qual è l’angolo equivalente alla sua quarta parte?

La metà dell’angolo iniziale si ottiene dividendo la misura dell’ampiezza per 2 (oppure moltiplicando per \frac{1}{2}), cioè:

44° : 2 = 22° (metà)

La quarta parte si ottiene dividendo per 4 la misura dell’ampiezza dell’angolo iniziale (oppure moltiplicando per \frac{1}{4}), quindi:

44° : 4 = 11° (quarta parte)

In sintesi, riportiamo una tabella-guida utile per risolvere i problemi con multipli e sottomultipli di un angolo.

Multipli di un angolo

Cosa chiede il problema? Qual è l’operazione da compiere sull’angolo iniziale?
Il doppio dell’angolo Si moltiplica per 2

α = 10°

Doppio di α → 10° · 2 = 20°

Il triplo dell’angolo Si moltiplica per 3

β = 8°

Triplo di β → 8° · 3 = 24°

Il quadruplo dell’angolo Si moltiplica per 4

γ = 12°

Quadruplo di γ → 12° · 4 = 48°

Il quintuplo dell’angolo Si moltiplica per 5

δ = 9°

Quintuplo di δ → 9° · 5 = 45°

Sottomultipli di un angolo

Cosa chiede il problema? Qual è l’operazione da compiere sull’angolo iniziale?
La metà dell’angolo Si divide per 2 o si moltiplica per \frac{1}{2}

α = 16°

Metà di α → 16° : 2 = 8°

La terza parte dell’angolo Si divide per 3 o si moltiplica per \frac{1}{3}

β = 24°

Terza parte di β → 24° : 3 = 8°

La quarta parte dell’angolo Si divide per 4 o si moltiplica per \frac{1}{4}

γ = 40°

Quarta parte di γ → 40° : 4 = 10°

La quinta parte dell’angolo Si divide per 5 o si moltiplica per \frac{1}{5}

δ = 55°

Quinta parte di δ → 55° : 5 = 11°

Vai alla pagina degli esercizi su multipli e sottomultipli di un angolo!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Problemi con somma e differenza di due angoli

Se stai cercando di capire come si svolgono i problemi con somma e differenza di due angoli, sei nel posto giusto!

Supponiamo di conoscere i valori della somma e della differenza di due angoli \alpha e\beta:

S=\alpha+\beta
D=\alpha-\beta

con \beta<\alpha

Come si trova l’ampiezza dei due angoli?

Ecco le due formule risolutive:

\alpha=\frac{S+D}{2}

\beta=\frac{S-D}{2}

Nell’immagine che segue sono rappresentati due angoli esempio.

Vediamo ora un paio di esempi di problemi con somma e differenza di due angoli (per una dimostrazione matematica dello svolgimento di questo problema, vai alla lezione sui problemi con somma e differenza di due numeri).

Esempio 1

Determinare l’ampiezza di due angoli, sapendo che la loro somma è di 70° mentre la loro differenza è di 20°.

Innanzitutto indichiamo i dati di questo problema:

S=\alpha+\beta=70°

D=\alpha-\beta=20°

Consideriamo che \beta<\alpha.

Come scritto in precedenza, lo svolgimento di questo problema è molto semplice: è sufficiente, infatti, applicare le due formule risolutive, che permettono di ottenere l’ampiezza dei due angoli incogniti.

Procediamo, quindi, applicando le formule:

\alpha=\frac{S+D}{2}=\frac{70+20}{2}=\frac{90}{2}=45°

\beta=\frac{S-D}{2}=\frac{70-20}{2}=\frac{50}{2}=25°

La somma dei due valori ottenuti è effettivamente 70° (45° + 25° = 70°); lo stesso vale per la differenza, cioè 20° (45° – 25° = 20°), quindi i valori ottenuti sono corretti.

Esempio 2

Due angoli sono tali che la loro somma è di 95° e la loro differenza è di 29°. Qual è l’ampiezza dei due angoli?

Come per il primo esempio, indichiamo i dati di questo problema:

S=\alpha+\beta=95°

D=\alpha-\beta=29°

Consideriamo che \beta<\alpha.

Anche in questo caso applichiamo le due formule risolutive:

\alpha=\frac{S+D}{2}=\frac{95+29}{2}=\frac{124}{2}=62°

\beta=\frac{S-D}{2}=\frac{95-29}{2}=\frac{66}{2}=33°

Verifichiamo i valori ottenuti: la somma delle ampiezze è effettivamente 95° (62° + 33° = 95°); lo stesso vale per la differenza, cioè 29° (62° – 33° = 29°), quindi i valori ottenuti sono corretti.


Se gli esempi ti hanno aiutato a capire bene l’argomento, vai alla pagina degli esercizi sui problemi con somma e differenza di due angoli.


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Differenza di due segmenti e loro rapporto

Differenza di due segmenti e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La differenza di due segmenti è 8 cm e uno è i \frac{4}{3} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la differenza delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 – n2 = 8 – cioè la differenza delle misure dei due segmenti
  • n1 = \frac{4}{3} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà dello scomporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà dello scomporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{4}{3}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 4 : 3

In più, sappiamo che n1 – n2 = 8. Possiamo, quindi, applicare la proprietà dello scomporre scrivendo:

(n1 – n2) : n1 = (4 – 3) : 4

Ora è sufficiente sostituire 8 dentro la parentesi (n1 – n2), ottenendo:

8 : n1 = 1 : 4

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (8 · 4) : 1 = 32

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 32 – 8 = 24

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{4}{3}, possiamo disegnare due segmenti, uno di lunghezza 4 unità e l’altro di lunghezza 3 unità:

Segmento 4 unità

Segmento 3 unità

Sapendo che n1 – n2 = 8, si può immaginare che la differenza sia rappresentata da un segmento pari a 1 unità, che corrisponde a 8.

Considerando che 1 unità vale 8 e che i segmenti iniziali sono lunghi, rispettivamente, 4 unità e 3 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 8 per le unità di ogni segmento, cioè:

8 · 4 = 32 = n1

8 · 3 = 24 = n2


Vai alla pagina degli esercizi su differenza di due segmenti e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Multipli e sottomultipli di un segmento

Multipli e sottomultipli di un segmento: ecco la lezione che ti chiarirà ogni dubbio!

  1. Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?
  2. Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

I problemi sopra proposti sono due esempi che riguardano il multiplo di un segmento (problema nr. 1) e il sottomultiplo di un segmento (problema nr. 2).

Il problema nr. 1 riguarda il multiplo di un segmento perché, partendo da un segmento iniziale, si chiede di trovare il suo doppio (significa due volte il segmento iniziale) e il suo triplo (cioè tre volte il segmento iniziale).

Il problema nr. 2 riguarda, invece, il sottomultiplo di un segmento perché, sapendo la misura del segmento iniziale, viene chiesto di trovare la sua metà (significa, semplicemente, dividere per 2 la misura del segmento iniziale) e la sua quarta parte (cioè trovare quanto misura \frac{1}{4} del segmento iniziale).

Risolviamo i due problemi sopra proposti.

Esempio 1

Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?

Come detto, il doppio del segmento significa “due volte” il segmento iniziale, cioè:

10 cm · 2 = 20 cm (doppio)

Il triplo del segmento iniziale significa “tre volte” il segmento iniziale, quindi:

10 cm · 3 = 30 cm (triplo)

Esempio 2

Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

La metà del segmento iniziale si ottiene dividendo la misura per 2 (oppure moltiplicando per \frac{1}{2}), cioè:

24 cm : 2 = 12 cm (metà)

La quarta parte si ottiene dividendo per 4 la misura del segmento iniziale (oppure moltiplicando per \frac{1}{4}), quindi:

24 cm : 4 = 6 cm (quarta parte)

In sintesi, riportiamo una tabella-guida utile per risolvere i problemi con multipli e sottomultipli di un segmento.

Multipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
Il doppio del segmento Si moltiplica per 2

AB = 3 cm

Doppio di AB → 3 cm · 2 = 6 cm

Il triplo del segmento Si moltiplica per 3

CD = 7 cm

Triplo di CD → 7 cm · 3 = 21 cm

Il quadruplo del segmento Si moltiplica per 4

EF = 10 cm

Quadruplo di EF → 10 cm · 4 = 40 cm

Il quintuplo del segmento Si moltiplica per 5

GH = 6 cm

Quintuplo di GH → 6 cm · 5 = 30 cm

Sottomultipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
La metà del segmento Si divide per 2 o si moltiplica per \frac{1}{2}

AB = 4 cm

Metà di AB → 4 cm : 2 = 2 cm

La terza parte del segmento Si divide per 3 o si moltiplica per \frac{1}{3}

CD = 15 cm

Terza parte di CD → 15 cm : 3 = 5 cm

La quarta parte del segmento Si divide per 4 o si moltiplica per \frac{1}{4}

EF = 24 cm

Quarta parte di EF → 24 cm : 4 = 6 cm

La quinta parte del segmento Si divide per 5 o si moltiplica per \frac{1}{5}

GH = 60 cm

Quinta parte di GH → 60 cm : 5 = 12 cm

Vai alla pagina degli esercizi su multipli e sottomultipli di un segmento!


Sei un insegnante? Dai un’occhiata a Didatticaoggi: un progetto per chi vive l’avventura dell’insegnamento!

Somma di due segmenti e loro rapporto

Somma di due segmenti e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La somma di due segmenti è 35 cm e uno è i \frac{3}{4} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la somma delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 + n2 = 35 – cioè la somma delle misure dei due segmenti
  • n1\frac{3}{4} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà del comporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà del comporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 3 : 4

In più, sappiamo che n1 + n2 = 35. Possiamo, quindi, applicare la proprietà del comporre scrivendo:

(n1 + n2) : n1 = (3 + 4) : 3

Ora è sufficiente sostituire 35 dentro la parentesi (n1 + n2), ottenendo:

35 : n1 = 7 : 3

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (35 · 3) : 7 = 15

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 35 – 15 = 20

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo disegnare due segmenti, uno di lunghezza 3 unità e l’altro di lunghezza 4 unità:

Segmento 3 unità

Segmento 4 unità

Sapendo che n1 + n2 = 35, si può disegnare il segmento somma dei due segmenti iniziali, ottenendo:

Segmento 7 unità

Come si può notare nel disegno sopra riportato, il segmento somma è formato da 7 unità, che corrispondono alla somma dei due segmenti incogniti.

Per determinare quanto vale 1 unità del segmento è sufficiente eseguire una semplice divisione, cioè:

35 : 7 = 5

Sapendo che 1 unità vale 5 e che i segmenti iniziali sono lunghi, rispettivamente, 3 unità e 4 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 5 per le unità di ogni segmento, cioè:

5 · 3 = 15 = n1

5 · 4 = 20 = n2


Vai alla pagina degli esercizi su somma di due segmenti e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Somma e differenza di due segmenti

Somma e differenza di due segmenti: cosa significa?

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Questo è un classico problema di geometria nel quale viene chiesto di calcolare la misura di due segmenti, conoscendo la loro somma e la loro differenza.

In generale, per svolgere questo tipo di problema, si può applicare la regola generale dei problemi con somma e differenza di due numeri.

Supponiamo che i due segmenti siano a e b. Esprimiamo sotto forma di addizione e di sottrazione i dati del problema:

S = a + b
D = ab
con b < a

Come si trova la lunghezza dei due segmenti?

Ecco le due formule risolutive:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Disegniamo i due segmenti a e b:

somma e differenza di due numeri_3

Rappresentiamo la loro somma (un segmento adiacente all’altro) e la loro differenza (segmento tratteggiato in verde).

somma e differenza di due numeri_4

Proiettiamo il segmento che rappresenta la sottrazione (ab) in basso nel segmento che rappresenta l’addizione (a + b): in questo modo troviamo due segmenti uguali, che corrispondono a due volte il segmento b.

Dividendo per due, troviamo il valore di b. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_5

In modo analogo, se dal segmento somma aggiungiamo il valore della differenza (parte tratteggiata) troviamo due segmenti uguali, che corrispondono a due volte il segmento a.

Dividendo per due, troviamo la misura del segmento a. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_6

In sintesi, quando abbiamo la somma e la differenza di due segmenti a e b, per trovarne la misura applichiamo queste due semplici formule:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Riprendiamo il problema proposto inizialmente:

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Secondo quanto esposto poco sopra, per trovare la misura dei due segmenti è sufficiente svolgere le due operazioni seguenti:

a=\frac{20+10}{2}=\frac{30}{2}=15cm

b=\frac{20-10}{2}=\frac{10}{2}=5cm

I due segmenti misurano rispettivamente 15 cm e 5 cm (se sommiamo le loro misure otteniamo effettivamente 20 cm, mentre se eseguiamo la sottrazione otteniamo 10 cm).

Vai alla pagina degli esercizi!

Esercizi su numeri, operazioni e problemi

Ecco una pagina dedicata interamente agli esercizi su numeri, operazioni e problemi!

Per ogni argomento è presente il link al pdf con gli esercizi. Inoltre, per la maggior parte degli argomenti, è presente il link alla videolezione direttamente da canale YouTube matematicaoggi.


Questi erano gli esercizi su numeri, operazioni e problemi: se hai ancora dei dubbi e le videolezioni non ti hanno aiutato, consulta la pagina con le lezioni!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!