Verifiche e test

In questa pagina potete trovare alcune verifiche di matematica e test a risposta multipla  di matematica (con le relative soluzioni).

Per ogni verifica è indicato l’argomento: gli esercizi sono stati estratti a caso da quelli presenti nel sito.

Verifiche di aritmetica

Espressioni con i numeri naturali Testo Soluzione
Potenze in generale ed espressioni in N con le proprietà delle potenze Testo Soluzioni
Divisibilità, Scomposizioni in fattori primi, M.C.D. e m.c.m. Testo Soluzioni

Verifiche di algebra

(in fase di preparazione)

Verifiche di geometria

(in fase di preparazione)

Distanza tra due punti

Quando si opera sul piano cartesiano è spesso necessario dover calcolare la distanza tra due punti.

Per calcolare la distanza tra due punti sul piano cartesiano è necessario conoscere le coordinate cartesiane di almeno due punti distinti. Unendo questi due punti si forma un segmento.

Si possono distinguere tre casi, a seconda che il segmento che si forma dall’unione dei punti sia orizzontale, verticale, obliquo.

Ipotizziamo che i due punti distinti siano A e B e che le loro coordinate cartesiane siano le seguenti:

A(x_{A}; y_{A})

B(x_{B}; y_{B})

1° caso: segmento orizzontale

Ipotizziamo che i nostri punti A e B abbiano le seguenti coordinate:

A(1; 1)

B(6; 1)

Rappresentandoli nel piano cartesiano si ottiene un segmento orizzontale, come si può osservare nel piano sotto rappresentato.

Segmento orizzontale

In questo caso, per determinare la distanza tra i punti A e B (quindi, la lunghezza del segmento AB), è sufficiente applicare la seguente formula:

AB=\left \| x_B-x_A \right \|

Ciò significa che è sufficiente fare la differenza, in modulo, tra le ascisse dei due punti; quindi avremo:

AB=\left \| 6-1 \right \|=5

2° caso: segmento verticale

Ipotizziamo che i nostri punti A e B abbiano le seguenti coordinate:

A(2; 1)

B(2; 7)

Rappresentandoli nel piano cartesiano si ottiene un segmento verticale, come si può osservare nel piano sotto rappresentato.

Segmento verticale

In questo caso, per determinare la distanza tra i punti A e B (quindi, la lunghezza del segmento AB), è sufficiente applicare la seguente formula:

AB=\left \| y_B-y_A \right \|

Ciò significa che è sufficiente fare la differenza, in modulo, tra le ordinate dei due punti; quindi avremo:

AB=\left \| 7-1 \right \|=6

3° caso: segmento obliquo

Ipotizziamo che i nostri punti A e B abbiano le seguenti coordinate:

A(2; 2)

B(6; 5)

Rappresentandoli nel piano cartesiano si ottiene un segmento obliquo, come si può osservare nel piano sotto rappresentato.

Segmento obliquo

In questo caso, per determinare la distanza tra i punti A e B (quindi, la lunghezza del segmento AB), è sufficiente applicare la seguente formula:

AB=\sqrt{ (x_B-x_A)^{2}+ (y_B-y_A)^{2}}

Questa formula non è altro che l’applicazione del Teorema di Pitagora; quindi avremo:

AB=\sqrt{ (x_B-x_A)^{2}+ (y_B-y_A)^{2}}=\sqrt{ (6-2)^{2}+ (5-2)^{2}}=\sqrt{ 4^{2}+ 3^{2}}=\sqrt{16+9}=\sqrt{25}=5

Vai alla pagina degli esercizi sulla distanza tra due punti sul piano cartesiano!

Multipli e sottomultipli di un segmento

  1. Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?
  2. Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

I problemi sopra proposti sono due esempi che riguardano il multiplo di un segmento (problema nr. 1) e il sottomultiplo di un segmento (problema nr. 2).

Il problema nr. 1 riguarda il multiplo di un segmento perché, partendo da un segmento iniziale, si chiede di trovare il suo doppio (significa due volte il segmento iniziale) e il suo triplo (cioè tre volte il segmento iniziale).

Il problema nr. 2 riguarda, invece, il sottomultiplo di un segmento perché, sapendo la misura del segmento iniziale, viene chiesto di trovare la sua metà (significa, semplicemente, dividere per 2 la misura del segmento iniziale) e la sua quarta parte (cioè trovare quanto misura \frac{1}{4} del segmento iniziale).

Risolviamo i due problemi sopra proposti.

Esempio 1

Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?

Come detto, il doppio del segmento significa “due volte” il segmento iniziale, cioè:

10 cm · 2 = 20 cm (doppio)

Il triplo del segmento iniziale significa “tre volte” il segmento iniziale, quindi:

10 cm · 3 = 30 cm (triplo)

Esempio 2

Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

La metà del segmento iniziale si ottiene dividendo la misura per 2 (oppure moltiplicando per \frac{1}{2}), cioè:

24 cm : 2 = 12 cm (metà)

La quarta parte si ottiene dividendo per 4 la misura del segmento iniziale (oppure moltiplicando per \frac{1}{4}), quindi:

24 cm : 4 = 6 cm (quarta parte)

In sintesi, riportiamo una tabella-guida utile per risolvere i problemi con multipli e sottomultipli di un segmento.

Multipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
Il doppio del segmento Si moltiplica per 2

AB = 3 cm

Doppio di AB → 3 cm · 2 = 6 cm

Il triplo del segmento Si moltiplica per 3

CD = 7 cm

Triplo di CD → 7 cm · 3 = 21 cm

Il quadruplo del segmento Si moltiplica per 4

EF = 10 cm

Quadruplo di EF → 10 cm · 4 = 40 cm

Il quintuplo del segmento Si moltiplica per 5

GH = 6 cm

Quintuplo di GH → 6 cm · 5 = 30 cm

Sottomultipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
La metà del segmento Si divide per 2 o si moltiplica per \frac{1}{2}

AB = 4 cm

Metà di AB → 4 cm : 2 = 2 cm

La terza parte del segmento Si divide per 3 o si moltiplica per \frac{1}{3}

CD = 15 cm

Terza parte di CD → 15 cm : 3 = 5 cm

La quarta parte del segmento Si divide per 4 o si moltiplica per \frac{1}{4}

EF = 24 cm

Quarta parte di EF → 24 cm : 4 = 6 cm

La quinta parte del segmento Si divide per 5 o si moltiplica per \frac{1}{5}

GH = 60 cm

Quinta parte di GH → 60 cm : 5 = 12 cm

Vai alla pagina degli esercizi su multipli e sottomultipli di un segmento!

Teorema di Pitagora

In geometria il Teorema di Pitagora è, probabilmente, il teorema più conosciuto.

Il Teorema di Pitagora si applica ai triangoli rettangoli, ma esistono molteplici applicazioni anche nelle altre figure piane e nei solidi.

Innanzitutto vediamo cosa prevede questo teorema: il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti.

Per tradurre quanto sopra presentato, vediamo la figura seguente:

Teorema di Pitagora

Il triangolo rettangolo è disegnato in blu ed è delimitato da:

  • lato AB (cateto maggiore – indicato con cM);
  • lato AC (cateto minore – indicato con cm);
  • lato BC (ipotenusa – indicata con i).

Sui tre lati sono costruiti tre quadrati: il lato di ogni quadrato è pari alla lunghezza dei lati del triangolo.

Il Teorema di Pitagora, in pratica, afferma che l’area del quadrato verde (Q3) è uguale alla somma delle aree dei quadrati arancione e giallo (Q1 e Q2), cioè:

Q3 = Q1 + Q2

Facciamo un esempio, assegnando ai lati del triangolo alcuni valori (non scelti a caso, poiché un triangolo è rettangolo se i lati hanno delle misure tali da essere una terna pitagorica).

AB = 4 cm; AC = 3 cm; BC = 5 cm.

Applicando l’enunciato del Teorema di Pitagora avremo:

52 = 32 + 42 → 25 = 9 + 16 → 25 = 25

Con questo esempio abbiamo anche implicitamente visto cos’è una terna pitagorica, cioè un insieme di tre numeri naturali (n1, n2 e n3) tali che:

n12 + n22 = n32

Nei problemi di geometria con cui si ha a che fare solitamente si utilizzano delle formule che derivano da quella sopra descritta (Q3 = Q1 + Q2); in particolare, le formule sono quelle che permettono di ottenere la misura di un lato del triangolo, conoscendo le misure degli altri due lati.

Le formule del Teorema di Pitagora sono le seguenti:

  • i=\sqrt{c_m{}^{2}+c_M{}^{2}}  → formula che permette di ricavare la misura dell’ipotenusa, conoscendo le misure dei due cateti
  • c_m{}=\sqrt{i^{2}-c_M{}^{2}} → formula che permette di ricavare la misura del cateto minore, conoscendo le misure dell’ipotenusa e del cateto maggiore
  • c_M{}=\sqrt{i^{2}-c_m{}^{2}} → formula che permette di ricavare la misura del cateto maggiore, conoscendo le misure dell’ipotenusa e del cateto minore

Vediamo qualche esempio di applicazione di queste formule in alcuni problemi sui triangoli rettangoli.

Esempio 1

I cateti di un triangolo rettangolo misurano, rispettivamente, 6 cm e 8 cm. Quanto misura l’ipotenusa?

Il problema sopra presentato è uno tra i più classici che riguardano il Teorema di Pitagora: la domanda chiede di trovare la misura dell’ipotenusa di un triangolo rettangolo, di cui si conosce la misura dei due cateti.

Per svolgere questo problema è sufficiente applicare la prima delle tre formule sopra riportate:

i=\sqrt{c_m{}^{2}+c_M{}^{2}}

Sostituendo i valori, si ottiene:

i=\sqrt{c_m{}^{2}+c_M{}^{2}}=\sqrt{6{}^{2}+8{}^{2}}=\sqrt{36+64}=\sqrt{100}=10cm

Esempio 2

La base di un rettangolo misura 15 cm. Calcolare la misura dell’altezza, sapendo che la diagonale del rettangolo misura 17 cm.

Questo è un classico problema nel quale il Teorema di Pitagora è applicato ad altre figure geometriche (in questo caso ad un rettangolo). In realtà, se si immagina la figura del problema, si può facilmente intuire che tracciando la diagonale del rettangolo si ottengono due triangoli rettangoli uguali: ecco perché è possibile (e necessario) applicare il Teorema di Pitagora.

Teorema di Pitagora_2

La richiesta del problema è la misura dell’altezza del rettangolo: si tratta, quindi, di calcolare la misura di un cateto (quello minore), poiché la diagonale corrisponde all’ipotenusa, mentre la base del rettangolo all’altro cateto (quello maggiore).

Si utilizzerà, quindi, la formula seguente:

c_m{}=\sqrt{i^{2}-c_M{}^{2}}

Sostituendo i valori, si ottiene:

c_m{}=\sqrt{i^{2}-c_M{}^{2}}=\sqrt{17{}^{2}-15{}^{2}}=\sqrt{289-225}=\sqrt{64}=8cm

Esempio 3

In un cono l’apotema misura 37 cm. Sapendo che il raggio di base è di 12 cm, calcolare la misura dell’altezza del cono.

Questo è un problema nel quale il Teorema di Pitagora è applicato ad un solido (in questo caso ad un cono).

Teorema di Pitagora_3

La richiesta del problema è la misura dell’altezza del cono: si tratta, quindi, di calcolare la misura di un cateto (quello maggiore), poiché l’apotema corrisponde all’ipotenusa, mentre il raggio del cono all’altro cateto (quello minore).

Si utilizzerà, quindi, la formula seguente:

c_M{}=\sqrt{i^{2}-c_m{}^{2}}

Sostituendo i valori, si ottiene:

c_M{}=\sqrt{i^{2}-c_m{}^{2}}=\sqrt{37{}^{2}-12{}^{2}}=\sqrt{1369-144}=\sqrt{1225}=35cm

Vai alla pagina degli esercizi sul Teorema di Pitagora!

Somma di due segmenti e loro rapporto

La somma di due segmenti è 35 cm e uno è i \frac{3}{4} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la somma delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 + n2 = 35 – cioè la somma delle misure dei due segmenti
  • n1\frac{3}{4} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà del comporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà del comporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 3 : 4

In più, sappiamo che n1 + n2 = 35. Possiamo, quindi, applicare la proprietà del comporre scrivendo:

(n1 + n2) : n1 = (3 + 4) : 3

Ora è sufficiente sostituire 35 dentro la parentesi (n1 + n2), ottenendo:

35 : n1 = 7 : 3

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (35 · 3) : 7 = 15

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 35 – 15 = 20

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo disegnare due segmenti, uno di lunghezza 3 unità e l’altro di lunghezza 4 unità:

Segmento 3 unità

Segmento 4 unità

Sapendo che n1 + n2 = 35, si può disegnare il segmento somma dei due segmenti iniziali, ottenendo:

Segmento 7 unità

Come si può notare nel disegno sopra riportato, il segmento somma è formato da 7 unità, che corrispondono alla somma dei due segmenti incogniti.

Per determinare quanto vale 1 unità del segmento è sufficiente eseguire una semplice divisione, cioè:

35 : 7 = 5

Sapendo che 1 unità vale 5 e che i segmenti iniziali sono lunghi, rispettivamente, 3 unità e 4 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 5 per le unità di ogni segmento, cioè:

5 · 3 = 15 = n1

5 · 4 = 20 = n2

Vai alla pagina degli esercizi su somma di due segmenti e loro rapporto!

Somma e differenza di due segmenti

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Questo è un classico problema di geometria nel quale viene chiesto di calcolare la misura di due segmenti, conoscendo la loro somma e la loro differenza.

In generale, per svolgere questo tipo di problema, si può applicare la regola generale dei problemi con somma e differenza di due numeri.

Supponiamo che i due segmenti siano a e b. Il valore della somma e della differenza di due segmenti a e b si può esprimere nel modo seguente:

S = a + b
D = ab
con b < a

Come si trova la lunghezza dei due segmenti?

Ecco le due formule risolutive:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Disegniamo i due segmenti a e b:

somma e differenza di due numeri_3

Rappresentiamo la loro somma (un segmento adiacente all’altro) e la loro differenza (segmento tratteggiato in verde).

somma e differenza di due numeri_4

Proiettiamo il segmento differenza in basso nel segmento somma: in questo modo troviamo due segmenti uguali, che corrispondono a due volte il segmento b.

Dividendo per due, troviamo il valore di b. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_5

In modo analogo, se dal segmento somma aggiungiamo il valore della differenza (parte tratteggiata) troviamo due segmenti uguali, che corrispondono a due volte il segmento a.

Dividendo per due, troviamo la misura del segmento a. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_6

In sintesi, quando abbiamo la somma e la differenza di due segmenti a e b, per trovarne la misura applichiamo queste due semplici formule:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Riprendiamo il problema proposto inizialmente:

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Secondo quanto esposto poco sopra, per trovare la misura dei due segmenti è sufficiente svolgere le due operazioni seguenti:

a=\frac{20+10}{2}=\frac{30}{2}=15cm

b=\frac{20-10}{2}=\frac{10}{2}=5cm

I due segmenti misurano rispettivamente 15 cm e 5 cm (la somma delle loro misure è effettivamente 20 cm, mentre la loro differenza è 10 cm).

Vai alla pagina degli esercizi su somma e differenza di segmenti!