Devi svolgere alcuni problemi sul rettangolo? In questo articolo verranno presentati una serie di problemi standard.
Se non trovi un problema simile a quello che devi risolvere scrivilo nei commenti: provvederemo ad inserire la soluzione il prima possibile!
Problema 1: Un rettangolo ha la base e l’altezza che misurano, rispettivamente, 10 cm e 5 cm. Calcola perimetro e area del rettangolo.
Dati: | Richieste: |
Base (b) = 10 cm
Altezza (h) = 5 cm |
Perimetro?
Area? |
Questo problema si svolge in modo molto semplice, applicando le formule dirette di perimetro e area del rettangolo:
Applicando le formule si ottiene:
Problema 2: Un rettangolo ha l’altezza che misura 8 cm. Calcola perimetro e area del rettangolo, sapendo che la base è il doppio dell’altezza.
Dati: | Richieste: |
b = 2 · h
h = 8 cm |
Perimetro?
Area? |
In questo problema c’è un legame tra base e altezza: infatti si dice che la base è il doppio dell’altezza. Quindi, prima di applicare le formule dirette di perimetro e area del rettangolo, è necessario calcolare la misura della base:
Ora è sufficiente applicare le formule dirette di perimetro e area del rettangolo:
Nota: in altri problemi simili a questo viene indicata la misura di una delle dimensioni, mentre l’altra è la sua metà (ad es. la base misura 20 cm, mentre l’altezza è la sua metà); in questo caso è sufficiente dividere per 2 la misura indicata, per trovare quella della dimensione mancante. Fatto questo, si applicano le formule dirette per calcolare perimetro e area.
Problema 3: La base di un rettangolo misura 14 cm e l’altezza è i suoi 3/7. Calcola perimetro e area del rettangolo.
Dati: | Richieste: |
b = 14 cm
h = b |
Perimetro?
Area? |
I problemi in cui compaiono le frazioni sembrano complicati: in realtà non devono spaventare! In questo problema esiste un rapporto tra base e altezza, cioè l’altezza ha un legame matematico con la base, rappresentato da una frazione: l’altezza è i tre settimi della base.
Questo si traduce, matematicamente, con il calcolo seguente:
La parte “complicata” è risolta: ora è sufficiente applicare le formule dirette di perimetro e area del rettangolo:
Problema 4: La somma delle dimensioni di un rettangolo misura 44 cm e la base è 7/4 dell’altezza. Calcola il perimetro e l’area del rettangolo.
Dati: | Richieste: |
b + h = 44 cm
b = h |
Perimetro?
Area? |
Anche in questo problema c’è un rapporto matematico tra base e altezza: a differenza del problema precedente, il valore presente è la somma delle misure di base e altezza, cioè – al livello di frazione – la base rappresenta 7 parti del totale e l’altezza 4 parti del totale.
La somma, 44 cm, è rappresentata da 7 parti + 4 parti, quindi 11 parti: di conseguenza, per determinare le misure di base e altezza di procede in questo modo:
Ora che le misure di base e altezza sono determinate, possiamo applicare le formule dirette di perimetro e area del rettangolo:
Problema 5: Calcola il perimetro e l’area di un rettangolo, sapendo che l’altezza è 3/5 della base e che la loro differenza misura 10 cm.
Dati: | Richieste: |
b – h = 10 cm
h = b |
Perimetro?
Area? |
Come per il problema precedente, c’è un rapporto matematico tra base e altezza: il valore presente (10 cm) rappresenta la differenza delle misure di base e altezza, mentre – al livello di frazione – la base rappresenta 5 parti e l’altezza 3 parti.
La differenza, 10 cm, è rappresentata da 5 parti – 3 parti, quindi 2 parti: di conseguenza, per determinare le misure di base e altezza si procede in questo modo:
Ora che le misure di base e altezza sono determinate, possiamo applicare le formule dirette di perimetro e area del rettangolo:
Questi sono solo alcuni dei problemi sul rettangolo: per es. non sono presenti i problemi in cui viene chiesto di applicare le formule inverse. Se hai un problema che non sai risolvere, scrivi nei commenti e provvederemo ad aiutarti!
Vai agli esercizi sul rettangolo!
Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!
Buongiorno,
mi potete aiutare con questi due problemi per favore=
1) Calcola la lunghezza dell’;altra dimensione di un rettangolo sapendo che
il suo perimetro misura 30 cm e che la base misura 5 cm.
Calcola l’area del rettangolo.
2) Un quadrato ha il perimetro di 64 cm. Calcola la lunghezza del lato
Ciao!
Problema nr. 1
Partendo da perimetro e base, troviamo l’altezza: h = (2p – 2*b):2 = (30 – 5*2):2 = 10 cm
L’area di trova moltiplicando base per altezza, cioè 10*5 = 50 cm^2
Problema nr. 2
Per trovare il lato è sufficiente dividere la misura del perimetro per 4, quindi 64 : 4 = 16 cm.
Da un pezzo di stoffa rettangolare che ha un lato di 120cm e l’area di 5,4mq, quante tovaglie rettangolari aventi le dimensioni di 110 e 130 cm puoi ricavare?
Con l’area del pezzo di stoffa di 5,4mq e il lato di di 120 cm (1,2 m), puoi calcolare l’altro lato del pezzo di stoffa attraverso la formula inversa, dividendo area per lato, ottenendo 4,5 m. Se le tovaglie da ottenere hanno dimensione 1,1 m (110 cm) per 1,3 m (130 cm), significa che si possono ottenere 3 tovaglie intere. Se fai un disegno in scala puoi posizionare i rettangoli più piccoli dentro il rettangolo più grande e vedrai che in totale sono 3 tovaglie piccole.
un terreno rettangolare ha il perimetro di 60m e la base è 3/2 dell’altezza. sapendo che la spesa per il suo acquisto è stata di £162.000, determina il costo di ogni metro quadrato
Innanzitutto devi determinare la lunghezza di base e altezza. Considerando che la base è 3/2 dell’altezza, significa che la base è 3 unità, mentre la base è 2 unità: 3 + 2 = 5 unità, che è metà perimetro. Il perimetro intero è 10 unità. Il perimetro è 60 m, corrispondente a 10 unità: ogni unità sarà 60 m : 10 = 6 m. A questo punto determiniamo la misura di base e altezza, moltiplicando 6 m per le unità di base e altezza:
Base = 6 m x 3 = 18 m
Altezza = 6 m x 2 = 12 m
Ora troviamo l’area, facendo base per altezza, ottenendo 216 m^2
Il costo al metro quadrato si trova dividendo £162.000 per 216, ottenendo 750.
Potete aiutarmi.in un rettangolo il perimetro è 56cm e la base supera l altezza di 8cm.calcolare l area
Se la base supera l’altezza di 8 cm, significa che b – h = 8 cm.
Sapendo che il perimetro è 56 cm, possiamo dire che metà perimetro è 28 cm, cioè b + h.
Quando abbiamo somma e differenza di due quantità (in questo caso base e altezza del rettangolo), allora si può calcolare in questo modo:
h = (somma – differenza) : 2 = (28 – 8) : 2 = 20 : 2 = 10 cm.
b = (somma + differenza) : 2 = (28 + 8) : 2 = 36 : 2 = 18 cm.
A questo punto è possibile calcolare l’Area del rettangolo, moltiplicando base e altezza, ottenendo 180 cm^2.
Il perimetro di un rettangolo è 84 dm e la base è 5/4 dell’altezza. Calcola la lunghezza dei lati.
Grazie!
Il perimetro è dato dalla somma di due volte la base e due volte l’altezza, cioè 2p = 2b + 2h.
Metà perimetro, cioè b + h, sarà 84 dm : 2 = 42 dm.
Sapendo che la base è 5/4 dell’altezza, si può dire che b + h = 5 + 4 unità, cioè 9 unità.
Ogni unità misura 42 dm : 9 = 4,6 dm
La base, essendo di 5 unità, avrà una misura di 4,67 dm x 5 = 23,35 dm
L’altezza, essendo di 4 unità, avrà misura di 4,67 dm x 4 = 18,68 dm
Ciao posso chiedere aiuto .. in un rettangolo la somma delle dimensioni misura 25 cm, mentre la loro differenza è 9 cm. Calcola l’area
Prima di tutto è necessario determinare le misure del rettangolo. Sapendo che la somma è 25 e la differenza è 9, puoi scrivere così:
s = b + h
d = b – h
Quando hai somma e differenza di due valori, questi si determinano con queste due formule:
b = (s + d) : 2 = (25 + 9) : 2 = 34 : 2 = 17
h = (s – d) : 2 = (25 – 9) : 2 = 16 : 2 = 8
Ora l’area la puoi ottenere moltiplicando tra loro base e altezza, cioè 17 x 8 = 136
La base di un rettangolo è 12m. e l’altezza è 9m. Calcola perimetro, area e il rapporto tra area e perimetro.
Grazie
Il perimetro si determina sommando due volte la base e due volte l’altezza, cioè: 12 + 12 + 9 + 9 = 42 m.
L’area di determina moltiplicando base per altezza, cioè: 108 m^2.
Il rapporto tra area e perimetro si determina mettendo in frazione i due valori: 108 / 42, semplificando ottieni 18 / 7.
Un quadrato (ABCD) e un rettangolo (EFGH) hanno lo stesso perimetro di 132 m. Determina il lato
del quadrato e le dimensioni del rettangolo sapendo che la base del rettangolo è
7
4
dell’altezza.
Il lato del quadrato si determina dividendo per 4 il perimetro, ottenendo 33 cm.
Per quanto riguarda il rettangolo, se la base è 7/4 dell’altezza, significa che la base si può rappresentare con 7 unità e l’altezza con 4 unità: in totale (base + altezza sono 11 unità). Sapendo che in un rettangolo abbiamo 2 basi e 2 altezze, le unità totali sono 22.
La misura di una unità si ottiene dividendo il perimetro per le 22 unità, ottenendo 6 cm (valore di una unità).
Ora si moltiplica il valore di una unità per il numero di unità di base e altezza, cioè:
base = 6 cm x 7 = 42 cm
altezza = 6 cm x 4 = 24 cm