Equazioni di secondo grado spurie

Le equazioni di secondo grado spurie sono le equazioni espresse nella forma

a x^{2}+bx=0

Essa deriva dall’equazione in forma completa ax^{2}+bx+c=0 , in cui il temine c è uguale a 0.

Ma come si risolve una equazione di secondo grado spuria?

A questa domanda si risponde facilmente, poiché è sufficiente ricordare che le due soluzioni sono sempre:

x_{1}=0

x_{2}=-\frac{b}{a}

Vediamo alcuni esempi applicativi.

Esempio 1

4x^{2}-12x=0

In questa equazione i valori di riferimento sono i seguenti:

a=+4

b=-12

Non resta che sostituire questi valori all’interno delle formule risolutive:

x_{1}=0

x_{2}=-\frac{-12}{4}=+\frac{12}{4}=+3

Esempio 2

-2x^{2}+9x=0

Come per l’esempio 1, identifichiamo i valori di riferimento che ci aiuteranno a risolvere l’equazione:

a=-2

b=+9

Ora sostituiamo i valori all’interno delle formule, ottenendo:

x_{1}=0

x_{2}=-\frac{+9}{-2}=+\frac{9}{2}

Esempio 3

-5x^{2}-10x=0

In questo ultimo esempio i valori di riferimento per le formule risolutive sono i seguenti:

a=-5

b=-10

Le soluzioni dell’equazione le otteniamo sostituendo i valori:

x_{1}=0

x_{2}=-\frac{-10}{-5}=-\frac{10}{5}=-2


Qual è l’origine delle formule risolutive per svolgere le equazioni di secondo grado spurie? Lo vediamo!

Consideriamo la formula risolutiva delle equazioni di secondo grado complete:

x_{1,2}=\frac{-b\pm\sqrt{ b^{2}-4ac}}{2a}

Come detto, il termine c è uguale a 0: di conseguenza, se sostituiamo 0 al posto della lettera c, la formula si riduce come segue:

x_{1,2}=\frac{-b\pm\sqrt{ b^{2}}}{2a}

Portiamo fuori il termine al quadrato e usiamo \sqrt{b^2}=b (vero solo se b>0), ottenendo così:

x_{1,2}=\frac{-b\pm\ b}{2a}

Ora è possibile ottenere le formule iniziali:

x_{1}=\frac{-b+b}{2a}=\frac{0}{2a}=0

x_{2}=\frac{-b-b}{2a}=\frac{-2b}{2a}=-\frac{b}{a}


Vai alla pagina degli esercizi sulle equazioni di secondo grado spurie!

Equazioni di secondo grado pure

Le equazioni di secondo grado pure sono le equazioni espresse nella forma

a x^{2}+c=0

Essa deriva dall’equazione in forma completa ax^{2}+bx+c=0 , in cui il temine b è uguale a 0.

Ma come si risolve una equazione di secondo grado pura?

A questa domanda si risponde facilmente, poiché è sufficiente ricordarsi ed applicare le due piccole formule sotto riportate:

x_{1}=-\sqrt{-\frac{c}{a}}

x_{2}=+\sqrt{-\frac{c}{a}}

Vediamo con alcuni esempi come si applicano queste formule.

Esempio 1

 x^{2}-4=0

In questa equazione i valori di riferimento sono i seguenti:

a=+1

c=-4

Non resta che sostituire questi valori all’interno delle formule risolutive:

x_{1}=-\sqrt{-\frac{-4}{1}}=-\sqrt{\frac{4}{1}}=-\sqrt{4}}=-2

x_{2}=+\sqrt{-\frac{-4}{1}}=+\sqrt{\frac{4}{1}}=+\sqrt{4}}=+2

Esempio 2

 16x^{2}-1=0

Come per l’esempio 1, identifichiamo i valori di riferimento che ci aiuteranno a risolvere l’equazione:

a=+16

c=-1

Ora sostituiamo i valori all’interno delle formule, ottenendo:

x_{1}=-\sqrt{-\frac{-1}{16}}=-\sqrt{\frac{1}{16}}=-\frac{1}{4}

x_{2}=+\sqrt{-\frac{-1}{16}}=+\sqrt{\frac{1}{16}}=+\frac{1}{4}

Esempio 3

-25x^{2}+9=0

In questo ultimo esempio i valori di riferimento per le formule risolutive sono i seguenti:

a=-25

c=+9

Le soluzioni dell’equazione le otteniamo sostituendo i valori:

x_{1}=-\sqrt{-\frac{9}{-25}}=-\sqrt{\frac{9}{25}}=-\frac{3}{5}

x_{2}=+\sqrt{-\frac{9}{-25}}=+\sqrt{\frac{9}{25}}=+\frac{3}{5}


Qual è l’origine delle formule risolutive per svolgere le equazioni di secondo grado pure? Lo vediamo!

Scriviamo l’equazione ax^{2}+bx+c=0 in modo che a>0 . Se non è così, cambiamo tutto di
segno. Questo passo è importante perché la radice quadrata prende argomenti positivi e
restituisce numeri positivi.

Consideriamo la formula risolutiva delle equazioni di secondo grado complete:

x_{1,2}=\frac{-b\pm\sqrt{ b^{2}-4ac}}{2a}

Come detto, il termine b è uguale a 0: di conseguenza, se sostituiamo 0 al posto della lettera b, la formula si riduce come segue:

x_{1,2}=\frac{\pm\sqrt{-4ac}}{2a}

Possiamo portare fuori radice il 4, ottenendo così:

x_{1,2}=\frac{\pm2\sqrt{-ac}}{2a}

Ora possiamo semplificare il 2 sopra e sotto; la formula si riduce alla forma seguente:

x_{1,2}=\frac{\pm\sqrt{-ac}}{a}

Moltiplicando numeratore e denominatore per \sqrt{a} (si può fare solo se a>0) si ottiene:

x_{1,2}=\frac{\pm\sqrt{-ac}\cdot\sqrt{a}}{a\cdot\sqrt{a}}

Eseguendo la moltiplicazione a numeratore si ottiene:

x_{1,2}=\frac{\pm\sqrt{-a^2c}}{a\cdot\sqrt{a}}

Portiamo fuori il termine al quadrato e usiamo \sqrt{a^2}=a (vero solo se a>0), ottenendo così:

x_{1,2}=\frac{\pm{a}\sqrt{-c}}{a\cdot\sqrt{a}}

Ora è possibile semplificare i due termini a che si trovano a numeratore e a denominatore; in questo modo otteniamo:

x_{1,2}=\frac{\pm\sqrt{-c}}{\sqrt{a}}

Le radici presenti a numeratore e a denominatore hanno lo stesso indice, quindi è possibile applicare la stessa radice al rapporto \frac{-c}{a} ; a questo punto si ottiene la formula finale:

x_{1,2}=\pm\sqrt{\frac{-c}{a}}

Essa corrisponde alle due formule:

x_{1}=-\sqrt{-\frac{c}{a}}

x_{2}=+\sqrt{-\frac{c}{a}}


Vai alla pagina degli esercizi sulle equazioni di secondo grado pure!