Radice di una frazione

La radice di una frazione è un’operazione molto particolare che richiede attenzione.

In generale, la radice è l’opposto della potenza; per esempio:

2^4=16\to\sqrt[4]{16}=2

In questa lezione vedremo come si calcola la radice di una frazione.

In generale, vale la regola seguente:

\sqrt[a]{\frac{N}{D}}= \frac{\sqrt[a]{N}}{\sqrt[a]{D}}

Concretamente, la radice di una frazione con indice a si calcola applicando la radice sia al numeratore che al denominatore.

Presentiamo alcuni esempi per chiarire maggiormente questa regola. Se preferisci, a fondo pagina, puoi trovare un’utilissima videolezione!

Esempio 1

\sqrt[]{\frac{16}{25}}

In questo esempio è presente una radice quadrata (cioè con indice 2). Per svolgere questa operazione è sufficiente applicare la radice quadrata sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[]{\frac{16}{25}}= \frac{\sqrt[]{16}}{\sqrt[]{25}} =\frac{4}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice quadrata è la potenza alla seconda (o, al quadrato), avremo:

\frac{4^2}{5^2}=\frac{16}{25}

Esempio 2

\sqrt[3]{\frac{8}{125}}

In questo esempio è presente una radice con indice 3 (cioè una radice cubica). Per svolgere questa operazione è sufficiente applicare la radice cubica sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[3]{\frac{8}{125}}= \frac{\sqrt[3]{8}}{\sqrt[3]{125}} =\frac{2}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice cubica è la potenza alla terza (o, al cubo), avremo:

\frac{2^3}{5^3}=\frac{8}{125}

Esempio 3

\sqrt[]{1+\sqrt[]{\frac{49}{81}}}

In questo esempio è presente una doppia radice. Per svolgere questa operazione è necessario, innanzitutto, svolgere la radice interna; successivamente – quando tutte le operazioni sono state svolte e si ha un solo termine – si può risolvere la seconda radice.

Si precede, quindi, calcolando la prima radice (applicando la radice quadrata sia al numeratore che al denominatore), ottenendo:

\sqrt[]{1+\frac{7}{9}}}

Ora non resta che svolgere l’addizione, applicando le regole dell’addizione di frazioni, ottenendo così:

\sqrt[]{\frac{16}{9}}}

Applicando la radice quadrata sia al numeratore che al denominatore si ottiene:

\sqrt[]{\frac{16}{9}}= \frac{\sqrt[]{16}}{\sqrt[]{9}} =\frac{4}{3}

Questa che abbiamo appena presentato  non è l’unica operazione che è possibile svolgere con le frazioni.

Se desideri, puoi accedere ad altre lezioni sulle operazioni con le frazioni! In particolare:

E per finire, non perdere una lezione semplice ma efficace sulle espressioni con le frazioni!

Nel canale Youtube matematicaoggi è presente un’interessante playlist con una serie di videolezioni coinvolgenti, che completano le lezioni sopra elencate.

Frazioni con le proprietà delle potenze

In questa lezione vedremo le frazioni con le proprietà delle potenze.

Le proprietà delle potenze sono applicabili in molte operazioni matematiche.

Come si applicano le proprietà delle potenze alle frazioni?

  • Per prima cosa si applicano le regole in base alla specifica proprietà delle potenze
  • In seguito si applicano gli esponenti alla frazione risultante, ottenendo il risultato finale

Ci facciamo aiutare da alcuni esempi, specifici per ogni proprietà.

Prima proprietà delle potenze: prodotto di potenze con la stessa base

Esempio:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =

La proprietà prevede di mantenere la stessa base e di sommare gli esponenti, ottenendo:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =\left (  \frac{2}{3}\right )^{2+3}=\left (  \frac{2}{3}\right )^5

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^5=\frac{2^5}{3^5}\ =\frac{32}{243}\

Seconda proprietà delle potenze: quoziente di potenze con la stessa base

Esempio:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =

La proprietà prevede di mantenere la stessa base e di sottrarre gli esponenti, ottenendo:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =\left (  \frac{5}{4}\right )^{6-4}=\left (  \frac{5}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{5}{4}\right )^2=\frac{5^2}{4^2}\ =\frac{25}{16}\

Terza proprietà delle potenze: potenza di potenza

Esempio:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=

La proprietà prevede di mantenere la stessa base e di moltiplicare tra loro gli esponenti, ottenendo:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=  \left (  \frac{1}{2}\right )^{3 \cdot2}=  \left (  \frac{1}{2}\right )^6

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{1}{2}\right )^6=\frac{1^6}{2^6}=\frac{1}{64}

Quarta proprietà delle potenze: prodotto di potenze con lo stesso esponente

Esempio:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =

La proprietà prevede di mantenere lo stesso esponente e di moltiplicare le basi, ottenendo:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =\left (  \frac{3}{2} \cdot \frac{1}{2}\right )^2=\left (  \frac{3}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{3}{4}\right )^2=\frac{3^2}{4^2}=\frac{9}{16}

Quinta proprietà delle potenze: quoziente di potenze con lo stesso esponente

Esempio:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =

La proprietà prevede di mantenere lo stesso esponente e di dividere le basi (ricordando che la divisione di frazioni diventa una moltiplicazione, invertendo numeratore e denominatore della seconda frazione), ottenendo:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =\left (  \frac{1}{3} : \frac{1}{2}\right )^3=\left (  \frac{1}{3} \cdot \frac{2}{1}\right )^3=\left (  \frac{2}{3}\right )^3

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^3=\frac{2^3}{3^3}=\frac{8}{27}

Approfondimento: Videolezione sulle espressioni con le frazioni e le proprietà delle potenze

Potenza di una frazione

La potenza di una frazione è un’operazione da svolgere con attenzione, poiché si possono commettere alcuni errori importanti.

Per prima cosa è bene distinguere due casi:

  1. Potenza di una frazione con esponente positivo
  2. Potenza di una frazione con esponente negativo

Vediamo nel dettaglio come si affrontano.

1° caso – Potenza con esponente positivo

Questo è il caso più semplice; esso segue la regola seguente:

\left ( \frac{N}{D} \right )^a=\frac{N^a}{D^a}

In sintesi, per svolgere la potenza con esponente positivo è sufficiente applicare l’esponente sia al numeratore che al denominatore della frazione all’interno della parentesi.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{3}{2} \right )^2 \frac{3^2}{2^2} \frac{9}{4}
\left ( \frac{1}{4} \right )^3 \frac{1^3}{4^3} \frac{1}{64}
\left ( \frac{9}{5} \right )^1 \frac{9^1}{5^1} \frac{9}{5}
\left ( \frac{10}{7} \right )^0 \frac{10^0}{7^0} \frac{1}{1}= 1

2° caso – Potenza con esponente negativo

Questo è il caso richiede maggiore attenzione (è possibile fare riferimento anche alla lezione sulle potenze con esponente negativo); esso segue la regola seguente:

\left ( \frac{N}{D} \right )^{-a}=\left ( \frac{D}{N} \right )^{a}=\frac{D^a}{N^a}

In sintesi, per svolgere la potenza con esponente negativo è necessario, prima di tutto, invertire la posizione del numeratore con quella del denominatore, togliendo il segno meno dall’esponente; in seguito, si procede come nel primo caso, quindi è sufficiente applicare l’esponente sia al numeratore che al denominatore della frazione all’interno della parentesi.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{4}{3} \right )^{-2} \left ( \frac{3}{4} \right )^{2} \frac{3^2}{4^2} \frac{9}{16}
\left ( \frac{3}{2} \right )^{-3} \left ( \frac{2}{3} \right )^{3} \frac{2^3}{3^3} \frac{8}{27}
\left ( \frac{11}{7} \right )^{-1} \left ( \frac{7}{11} \right )^{1} \frac{7^1}{11^1} \frac{7}{11}
\left ( \frac{1}{2} \right )^{-5} \left ( \frac{2}{1} \right )^{5} \frac{2^5}{1^5} \frac{32}{1}=32

Se la spiegazione che ti abbiamo presentato non ti è stata sufficientemente chiara, ti invitiamo a vedere la videolezione!

Questa che abbiamo appena presentato  non è l’unica operazione che è possibile svolgere con le frazioni.

Se desideri, puoi accedere ad altre lezioni sulle operazioni con le frazioni! In particolare:

E per finire, non perdere una lezione semplice ma efficace sulle espressioni con le frazioni!

Nel canale Youtube matematicaoggi è presente un’interessante playlist con una serie di videolezioni coinvolgenti, che completano le lezioni sopra elencate.

Espressioni con le frazioni

Devi svolgere delle espressioni con le frazioni? Sei nel posto giusto!

In questa lezione vedremo come risolvere una espressione con le frazioni, facendo attenzione alle regole di svolgimento che sono necessarie; faremo riferimento alle regole suggerire da altre lezioni presenti nel nostro sito, in particolare:

Altri contenuti teorici utili verranno suggeriti in seguito svolgendo gli esercizi proposti negli esempi.

Esempio 1 – Espressione con le frazioni senza parentesi

\frac{4}{3}\cdot\frac{4}{5}-\frac{1}{5}+\frac{2}{5}:\frac{3}{2}=

L’espressione dell’esempio proposto non ha parentesi; secondo le regole di svolgimento delle espressioni in generale, il primo passaggio da svolgere prevede di risolvere moltiplicazioni e divisioni, nell’ordine in cui sono scritte (può essere utile leggere come si svolgono moltiplicazioni di frazioni e divisioni di frazioni):

  • Si svolgerà la moltiplicazione \frac{4}{3}\cdot\frac{4}{5}, moltiplicando tra loro i numeratori e i denominatori delle due frazioni, ottenendo \frac{16}{15};
  • Si svolgerà la divisione \frac{2}{5} : \frac{3}{2}, che verrà trasformata in una moltiplicazione, cioè \frac{2}{5} \cdot \frac{2}{3}.

\frac{16}{15}-\frac{1}{5}+\frac{2}{5}\cdot\frac{2}{3}=

Il passaggio successivo prevede di svolgere la moltiplicazione rimasta, cioè \frac{2}{5} \cdot \frac{2}{3}, ottenendo così:

\frac{16}{15}-\frac{1}{5}+\frac{4}{15}=

A questo punto si procede svolgendo addizioni e sottrazioni (può essere utile leggere come si svolgono addizioni di frazioni e sottrazioni di frazioni): essendo frazioni, si deve determinare il minimo comune multiplo dei denominatori, cioè il minimo comune denominatore tra 5 e 15. Essendo 15 multiplo di 5, il denominatore comune è 15, quindi avremo:

\frac{(15:15) \cdot 16-(15:5) \cdot 1+(15:15) \cdot 4}{15}=

Svolgendo i passaggi al numeratore, si ottiene:

\frac{16-3+4}{15}= \frac{17}{15}

Esempio 2 – Espressione con le frazioni con le parentesi

\left [ \left ( \frac{3}{5}+\frac{1}{2} \right ) \cdot \frac{5}{11} \right ]- \frac{1}{3}=

L’espressione dell’esempio proposto ha parentesi tonde e quadre; secondo le regole di svolgimento delle espressioni in generale, il primo passaggio da svolgere prevede di risolvere le operazioni all’interno delle parentesi tonde e, in seguito, quelle all’interno delle quadre.

All’interno delle parentesi tonde è presente un’addizione \left ( \frac{3}{5}+\frac{1}{2} \right ), che si svolge come nel passaggio esposto nell’esempio 1; quindi si avrà:

\left [ \left ( \frac{6+5}{10} \right ) \cdot \frac{5}{11} \right ]- \frac{1}{3}=

Svolgiamo il calcolo all’interno delle parentesi tonde, ottenendo:

\left [ \frac{11}{10} \cdot \frac{5}{11} \right ]- \frac{1}{3}=

Tolte le parentesi tonde, ora è necessario togliere le parentesi quadre, svolgendo la moltiplicazione presente \left [ \frac{11}{10} \cdot \frac{5}{11} \right ]; è possibile semplificare, 11 con 11 e 10 con 5, ottenendo come risultato:

\frac{1}{2} - \frac{1}{3}=

Ora è sufficiente svolgere l’ultima operazione, una sottrazione, ottenendo:

\frac{3-2}{6}= \frac{1}{6}

Guarda la videolezione sotto riportata per un ulteriore esempio!

Vai alla pagina degli esercizi sulle espressioni con le frazioni!


Sei un insegnante? Dai un’occhiata a Didatticaoggi: un progetto per chi vive l’avventura dell’insegnamento!

Potenze con esponente negativo

Hai di fronte alcune potenze con esponente negativo e non sai come si svolgono? In questa lezione ti chiariremo ogni dubbio!

Prima di capire come si calcola la potenza di un numero con esponente negativo, è necessario chiarire cos’è il reciproco di un numero. Questo concetto è estremamente importante nel momento in cui dobbiamo trovare il valore della potenza di un numero al quale è applicato un esponente negativo.

Il reciproco di un numero si ottiene dividendo 1 per il numero iniziale. Vediamo cosa significa questa frase con qualche esempio nella tabella sotto riportata:

Numero iniziale Passaggio da svolgere Reciproco
2 1 : 2 = \frac{1}{2}
+ 5 1 : (+ 5) = +\frac{1}{5}
− 8 1 : (− 8) = -\frac{1}{8}
\frac{3}{4} 1 : \frac{3}{4} = 1 · \frac{4}{3} = \frac{4}{3}
+\frac{5}{7} 1 : \left ( +\frac{5}{7} \right ) = 1 · \left ( +\frac{7}{5} \right ) +\frac{7}{5}
-\frac{9}{13} 1 : \left ( -\frac{9}{13} \right ) = 1 · \left ( -\frac{13}{9} \right ) -\frac{13}{9}
+\frac{1}{10} 1 : \left ( +\frac{1}{10} \right ) = 1 · \left ( +\frac{10}{1} \right ) + 10

In sintesi, per trovare il reciproco di un numero (non frazione), è sufficiente porre quel numero come denominatore di una frazione che ha come numeratore 1. Se, invece, dobbiamo trovare il reciproco di una frazione, è sufficiente cambiare di posto numeratore e denominatore. Attenzione: il segno del numero iniziale (come si può notare anche negli esempi in tabella) non cambia!

Chiarito cos’è il reciproco di un numero, vediamo ora come si calcola la potenza con esponente negativo.

 \left ( a \right )^{-b}

Il passaggio fondamentale consiste nel “togliere il meno” dall’esponente, in modo tale che risulti poi molto semplice svolgere la potenza. Per “rendere positivo” l’esponente, è sufficiente riscrivere la potenza nel modo seguente:

  • nella base scriviamo il reciproco del numero iniziale
  • nell’esponente scriviamo l’esponente iniziale senza il segno meno

In questo modo la potenza diventa:

 \left ( \frac{1}{a} \right )^{b}

Ora risulta molto semplice trovare il risultato, seguendo le regole di svolgimento delle potenze. Vediamo qualche esempio.

Esempio 1

 \left ( +2 \right )^{-3}

In questo esempio abbiamo la base (+ 2) alla quale si deve applicare l’esponente − 3.

Procediamo scrivendo al posto di (+ 2) il suo reciproco e come esponente il numero iniziale ma senza il segno meno (3); in questo modo si ottiene:

 \left ( +\frac{1}{2} \right )^{3}

Ora è sufficiente applicare l’esponente alla base; essendo una frazione, l’esponente 3 va applicato sia al numeratore che al denominatore, ottenendo così:

+\frac{1}{8}

Esempio 2

\left ( -\frac{2}{5} \right ) ^{-2}

In questo esempio abbiamo la base \left ( -\frac{2}{5} \right ) alla quale si deve applicare l’esponente − 2.

Procediamo scrivendo al posto di \left ( -\frac{2}{5} \right ) la sua reciproca e come esponente il numero iniziale ma senza il segno meno (2); in questo modo si ottiene:

\left ( -\frac{5}{2} \right ) ^{2}

Ora è sufficiente applicare l’esponente alla base; essendo una frazione, l’esponente 2 va applicato sia al numeratore che al denominatore, facendo attenzione a cambiare il segno (“meno per meno fa più”) ottenendo così:

+\frac{25}{4}

Vai alla pagina degli esercizi sulle potenze con esponente negativo!

Esercizi su frazioni, rapporti e proporzioni

Una grande raccolta con tanti esercizi di diversi livelli di difficoltà sulle frazioni, sui rapporti e sulle proporzioni, alcuni con le soluzioni!

Frazioni

  • Frazioni (gli esercizi sono suddivisi per livello all’interno del pdf);


  • Tipi di frazioni (gli esercizi sono suddivisi per livello all’interno del pdf);








  • Espressioni con le frazioni e le proprietà delle potenze:
    _livello base;
    _livello intermedio;
    _livello avanzato.


Rapporti e proporzioni


  • Esercizi sulle proprietà delle proporzioni:
    _livello base;
    _livello intermedio;
    _livello avanzato.

  • Somma e rapporto di due numeri:
    _livello base;
    _livello intermedio;
    _livello avanzato.

  • Differenza e rapporto di due numeri:
    _livello base;
    _livello intermedio;
    _livello avanzato.