Frazioni con le proprietà delle potenze

In questa lezione vedremo le frazioni con le proprietà delle potenze.

Le proprietà delle potenze sono applicabili in molte operazioni matematiche.

Come si applicano le proprietà delle potenze alle frazioni?

  • Per prima cosa si applicano le regole in base alla specifica proprietà delle potenze
  • In seguito si applicano gli esponenti alla frazione risultante, ottenendo il risultato finale

Ci facciamo aiutare da alcuni esempi, specifici per ogni proprietà.

Prima proprietà delle potenze: prodotto di potenze con la stessa base

Esempio:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =

La proprietà prevede di mantenere la stessa base e di sommare gli esponenti, ottenendo:

\left (  \frac{2}{3}\right )^2\cdot \left (  \frac{2}{3}\right )^3 =\left (  \frac{2}{3}\right )^{2+3}=\left (  \frac{2}{3}\right )^5

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^5=\frac{2^5}{3^5}\ =\frac{32}{243}\

Seconda proprietà delle potenze: quoziente di potenze con la stessa base

Esempio:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =

La proprietà prevede di mantenere la stessa base e di sottrarre gli esponenti, ottenendo:

\left (  \frac{5}{4}\right )^6: \left (  \frac{5}{4}\right )^4 =\left (  \frac{5}{4}\right )^{6-4}=\left (  \frac{5}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{5}{4}\right )^2=\frac{5^2}{4^2}\ =\frac{25}{16}\

Terza proprietà delle potenze: potenza di potenza

Esempio:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=

La proprietà prevede di mantenere la stessa base e di moltiplicare tra loro gli esponenti, ottenendo:

\left [  \left (  \frac{1}{2}\right )^3\right ]^2=  \left (  \frac{1}{2}\right )^{3 \cdot2}=  \left (  \frac{1}{2}\right )^6

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{1}{2}\right )^6=\frac{1^6}{2^6}=\frac{1}{64}

Quarta proprietà delle potenze: prodotto di potenze con lo stesso esponente

Esempio:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =

La proprietà prevede di mantenere lo stesso esponente e di moltiplicare le basi, ottenendo:

\left (  \frac{3}{2}\right )^2\cdot \left (  \frac{1}{2}\right )^2 =\left (  \frac{3}{2} \cdot \frac{1}{2}\right )^2=\left (  \frac{3}{4}\right )^2

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{3}{4}\right )^2=\frac{3^2}{4^2}=\frac{9}{16}

Quinta proprietà delle potenze: quoziente di potenze con lo stesso esponente

Esempio:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =

La proprietà prevede di mantenere lo stesso esponente e di dividere le basi (ricordando che la divisione di frazioni diventa una moltiplicazione, invertendo numeratore e denominatore della seconda frazione), ottenendo:

\left (  \frac{1}{3}\right )^3: \left (  \frac{1}{2}\right )^3 =\left (  \frac{1}{3} : \frac{1}{2}\right )^3=\left (  \frac{1}{3} \cdot \frac{2}{1}\right )^3=\left (  \frac{2}{3}\right )^3

Ora non resta che svolgere la potenza, applicando l’esponente sia al numeratore che al denominatore:

\left (  \frac{2}{3}\right )^3=\frac{2^3}{3^3}=\frac{8}{27}

Approfondimento: Videolezione sulle espressioni con le frazioni e le proprietà delle potenze

Seguici e condividi!
RSS
Follow by Email
Facebook
Facebook
Twitter
YouTube
YouTube