Potenza di una frazione

La potenza di una frazione è un’operazione da svolgere con attenzione, poiché si possono commettere alcuni errori importanti.

Per prima cosa è bene distinguere due casi:

  1. Potenza di una frazione con esponente positivo
  2. Potenza di una frazione con esponente negativo

Vediamo nel dettaglio come si affrontano.

1° caso – Potenza con esponente positivo

Questo è il caso più semplice; esso segue la regola seguente:

\left ( \frac{N}{D} \right )^a=\frac{N^a}{D^a}

In sintesi, per svolgere la potenza con esponente positivo è sufficiente applicare l’esponente sia al numeratore che al denominatore della frazione all’interno della parentesi.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{3}{2} \right )^2 \frac{3^2}{2^2} \frac{9}{4}
\left ( \frac{1}{4} \right )^3 \frac{1^3}{4^3} \frac{1}{64}
\left ( \frac{9}{5} \right )^1 \frac{9^1}{5^1} \frac{9}{5}
\left ( \frac{10}{7} \right )^0 \frac{10^0}{7^0} \frac{1}{1}= 1

2° caso – Potenza con esponente negativo

Questo è il caso richiede maggiore attenzione (è possibile fare riferimento anche alla lezione sulle potenze con esponente negativo); esso segue la regola seguente:

\left ( \frac{N}{D} \right )^{-a}=\left ( \frac{D}{N} \right )^{a}=\frac{D^a}{N^a}

In sintesi, per svolgere la potenza con esponente negativo è necessario, prima di tutto, invertire la posizione del numeratore con quella del denominatore, togliendo il segno meno dall’esponente; in seguito, si procede come nel primo caso, quindi è sufficiente applicare l’esponente sia al numeratore che al denominatore della frazione all’interno della parentesi.

Vediamo alcuni esempi nella tabella seguente:

\left ( \frac{4}{3} \right )^{-2} \left ( \frac{3}{4} \right )^{2} \frac{3^2}{4^2} \frac{9}{16}
\left ( \frac{3}{2} \right )^{-3} \left ( \frac{2}{3} \right )^{3} \frac{2^3}{3^3} \frac{8}{27}
\left ( \frac{11}{7} \right )^{-1} \left ( \frac{7}{11} \right )^{1} \frac{7^1}{11^1} \frac{7}{11}
\left ( \frac{1}{2} \right )^{-5} \left ( \frac{2}{1} \right )^{5} \frac{2^5}{1^5} \frac{32}{1}=32

Se la spiegazione che ti abbiamo presentato non ti è stata sufficientemente chiara, ti invitiamo a vedere la videolezione!

Questa che abbiamo appena presentato  non è l’unica operazione che è possibile svolgere con le frazioni.

Se desideri, puoi accedere ad altre lezioni sulle operazioni con le frazioni! In particolare:

E per finire, non perdere una lezione semplice ma efficace sulle espressioni con le frazioni!

Nel canale Youtube matematicaoggi è presente un’interessante playlist con una serie di videolezioni coinvolgenti, che completano le lezioni sopra elencate.

Seguici e condividi!
RSS
Follow by Email
Facebook
Facebook
Twitter
YouTube
YouTube