Espressioni con i numeri interi relativi e le proprietà delle potenze

Devi svolgere una espressione nella quale sono presenti i numeri interi relativi e le proprietà delle potenze? Qui ti spieghiamo come procedere!

Prima di tutto è bene chiarire che una espressione di questo tipo richiede di saper applicare alcune semplici regole e/o proprietà; in particolare:

Vediamo con un paio di esempi come poter applicare le diverse regole sopra elencate.

Esempio 1

[(− 4)5 : (− 4)2 − (+ 2)· (+ 2)3] : [(− 2)2]2 + (− 5)2 =

In questa espressione sono presenti parentesi tonde e quadre; inoltre è possibile applicare alcune proprietà delle potenze. In particolare (evidenziate con colori diversi):

  • quoziente di potenze con la stessa base (si lascia la stessa base e si sottraggono gli esponenti)
  • prodotto di potenze con la stessa base (si lascia la stessa base e si sommano gli esponenti)
  • potenza di potenza (si lascia la stessa base e si moltiplicano gli esponenti)

[(− 4)5 : (− 4)2(+ 2)· (+ 2)3] : [(− 2)2]2 + (− 5)2 =

Considerando che, per svolgere l’espressione, dobbiamo iniziare dalle operazioni all’interno delle parentesi tonde, applichiamo le proprietà sopra elencate, ottenendo così:

[(− 4)3 − (+ 2)5] : (− 2)4 + (− 5)2 =

Ora è sufficiente svolgere le potenze applicando gli esponenti alle rispettive basi, ottenendo:

[− 64 − (+ 32)] : (+ 16) + (+ 25) =

Un passaggio su cui bisogna prestare particolare attenzione è quello che prevede di togliere le parentesi nelle quali è contenuto un solo numero e con, al di fuori, un segno di addizione o sottrazione; in particolare:

[− 64 − (+ 32)] : (+ 16) + (+ 25) =

Nei due casi sopra evidenziati è sufficiente applicare una semplice regola pratica, cioè quella che prevede di moltiplicare il segno dentro per quello che sta al di fuori della parentesi (prodotto dei segni nella moltiplicazione di numeri interi relativi: “meno per più fa meno” e “più per più fa più”), ottenendo così:

[− 64 − 32] : (+ 16) + 25 =

Ora non resta che svolgere l’operazione all’interno della parentesi quadra:

[− 96] : (+ 16) + 25 =

Infine, svolgendo la divisione, si ottiene:

− 6 + 25 = + 19

Esempio 2

(+ 45)2 : (− 15)2 + (+ 8)0 − (+ 2)3 · (− 4)3 : (− 8)2 =

In questa espressione sono presenti solo parentesi tonde; inoltre è possibile applicare alcune proprietà delle potenze. In particolare (evidenziate con colori diversi):

  • quoziente di potenze con lo stesso esponente (si lascia lo stesso esponente e si dividono le basi)
  • prodotto di potenze con lo stesso esponente (si lascia lo stesso esponente e si moltiplicano le basi)

(+ 45)2 : (− 15)2 + (+ 8)0 − (+ 2)3 · (− 4)3 : (− 8)2 =

Considerando che, per svolgere l’espressione, dobbiamo iniziare dalle operazioni all’interno delle parentesi tonde, applichiamo le proprietà sopra elencate, ottenendo così:

(− 3)2 + (+ 8)0 − (− 8)3 : (− 8)2 =

Se osserviamo bene, l’ultima divisione è un’altra proprietà delle potenze, cioè quoziente di potenze con la stessa base (vista anche nell’esempio 1), che prevede di lasciare la stessa base e sottrarre gli esponenti; in questo modo si ottiene:

(− 3)2 + (+ 8)0 − (− 8)1 =

Ora è sufficiente svolgere le potenze applicando gli esponenti alle rispettive basi, ottenendo:

+ 9 + 1 − (− 8) =

Come nell’esempio 1 si deve fare attenzione nel momento in cui si tolgono le parentesi per svolgere gli ultimi calcoli, in particolare nel caso sotto evidenziato:

+ 9 + 1 − (− 8) =

Applichiamo la regola pratica vista anche in precedenza nell’esempio 1, cioè quella che prevede di moltiplicare il segno dentro per quello che sta al di fuori della parentesi (prodotto dei segni nella moltiplicazione di numeri interi relativi: “meno per meno fa più”), ottenendo così:

+ 9 + 1 + 8 = + 18

Vai alla pagina degli esercizi sulle espressioni con i numeri interi relativi e le proprietà delle potenze!

Espressioni con i numeri interi relativi

Devi svolgere una espressione con i numeri interi relativi? Ecco come puoi fare!

Per prima cosa è bene ricordare che per trovare il valore di una espressione con i numeri interi relativi si devono conoscere le regole di svolgimento di una espressione in generale. In particolare:

  • se nell’espressione ci sono parentesi, si eseguono inizialmente le operazioni all’interno delle parentesi tonde; di seguito le operazioni all’interno delle parentesi quadre; infine, le operazioni all’interno delle parentesi graffe.
  • Le operazioni da svolgere inizialmente sono moltiplicazioni e divisioni, nell’ordine in cui sono scritte; in seguito addizioni e sottrazioni, sempre nell’ordine in cui sono scritte. Nel caso di numeri interi relativi, si parla di somma algebrica.

Non dobbiamo dimenticare, infine, le regole di svolgimento delle operazioni con i numeri interi relativi.

Vediamo nel concreto come applicare queste regole.

Esempio 1

[(− 50) : (+ 25) − (+ 4)] · (2 − 6) =

Nell’espressione sopra riportata sono presenti parentesi tonde e quadre; si inizia svolgendo le operazioni all’interno delle parentesi tonde; in particolare, si svolgono le operazioni evidenziate in rosso:

[(− 50) : (+ 25) − (+ 4)] · (2 − 6) =

Si ottiene così:

[− 2 − (+ 4)] · (− 4) =

All’interno della parentesi quadra è presente una parentesi tonda con un solo numero: in questo caso – per togliere la parentesi tonda – è sufficiente eseguire il prodotto dei segni:

[− 2 − (+ 4)] · (− 4) =

Moltiplicheremo, cioè, il meno che sta al di fuori della tonda con il più del numero all’interno della tonda (evidenziato in blu), ottenendo:

[− 2 − 4] · (− 4) =

Ora è sufficiente svolgere l’operazione all’interno della parentesi quadra (somma di due numeri negativi), ottenendo:

[− 6] · (− 4) =

Per trovare il risultato, è sufficiente eseguire la moltiplicazione:

[− 6] · (− 4) = + 24

Esempio 2

(+ 25 + 22) : [(− 8) · 4 − 15] =

Nell’espressione sopra riportata sono presenti parentesi tonde e quadre; si inizia svolgendo le operazioni all’interno delle parentesi tonde; in particolare, si svolgono le operazioni evidenziate in rosso:

(+ 25 + 22) : [(− 8) · 4 − 15] =

Si ottiene così:

(+ 47) : [− 32 − 15] =

Ora è sufficiente svolgere l’operazione all’interno della parentesi quadra (somma di due numeri negativi), ottenendo:

(+ 47) : [− 47] =

Per trovare il risultato, è sufficiente eseguire la divisione:

(+ 47) : [− 47] = − 1

Vai alla pagina degli esercizi sulle espressioni con i numeri interi relativi!